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Charge transport through a spatially periodic
porous medium: electrokinetic and convective
dispersion phenomena

By Davip A. EDWARDS}

Department of Chemical Engineering, Massachusetts Institute of Technology,
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A general theory is outlined for the transport of charge and the convective dispersion
of charged species through a spatially periodic porous medium under the influence
of a homogeneous, Darcy-scale electric field E, as well as a homogeneous applied
pressure-gradient field V. The particulate surfaces of the porous medium are char-
acterized as possessing a non-uniform surface charge, with thin, Helmholtz double
layers bordering the charged surfaces in the interstitial fluid phase. The theory uses a
straightforward application of macrotransport theory, as well as standard methods of
analysis of transport phenomena in spatially periodic systems, to derive, first, general
expressions for the following four Darcy-scale, electromechanical-transduction prop-
erty dyadics: (i) the effective electrical conductivity @; (ii) the hydraulic permeability
K (iii) the ‘streaming potential’ coupling dyadic f;; and (iv) the ‘electroosmotic’
coupling dyadic fCE General formulas for these gross-scale, phenomenological co-
efficients are provided in terms of four spatially periodic, microscale dyadic fields
(Vg, Vh, V, VE). Unit-cell, boundary-value problems are derived for determining
these latter dyadics as functions of the microscale geometrical and physicochemical
nature of the porous material. In addition, formulas for computing the mean velocity
U" and dispersivity D" of a charged, convecting and diffusing Brownian particle (or
cluster of particles) are presented. T'wo explicit examples are offerred to illustrate the
implementation of the theory. In the first example, a charged, pointsize, Brownian
particle is imagined as convecting and diffusing within a porous medium composed
of parallel, charged, rectilinear plates between which a Newtonian fluid flows and an
electric field is applied. In the second example, leadlng-order expressions are derived
for the electrokinetic transductive properties (&, K, Kp, Ky) of a highly porous
two-dimensional array of charged circular cylinders though which a Newtonian fluid
flows. These leading-order results are found to be in agreement with results appearing
in the literature.
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4 ﬁ Latin letters

Q) a spherical solute radius equation (5.7b)
T O B vector field related to effective diffusivity (5.15)
=w B periodic B-field vector (5.22)
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206 D. A. Edwards
C solute concentration field (5.8)
Co initial solute concentration (5.6)
c mean solute concentration (2.9)
D Brownian diffusivity dyadic (5.2)
dp/dz scalar pressure gradient (6.2)
ds outwardly directed surface area element (3.18¢)
dv differential volume element (3.18b)
D effective solute dispersivity dyadic (5.15)
E local electric field vector (3.4)
E Darcy-scale electric field (3.18)
g vector field related to electric potential (3.38)
g periodic g-field (3.38)
h vector field related to electric potential (3.38)
H local magnetic field intensity vector (3.6a)
H Darcy-scale magnetic field intensity vector (3.29)
I surface idemfactor (3.13)
J solute flux vector (5.2)
Ju current flux vector (3.6b)
j surface current flux vector (3.2)
JsE surface current flux vector (electric-field-driven) (3.2)
JgP surface current flux vector (pressure-gradient-driven) (3.3¢)
Jg5e flux of cellular probability (5.16)
Ju Darcy-scale current flux vector (3.390)
k Boltzmann constant (5.7b)
K Darcy-scale hydraulic permeability dyadic (4.20)
Ky Darcy-scale electroosmotic permeability dyadic (4.21)
Kp Darcy-scale streaming-potential conductivity dyadic (3.400)
{l;} set of basic lattice vectors (2.5)
M hydrodynamic mobility dyadic (5.8b)
Mg, electrophoretic mobility dyadic (5.2)
n outwardly directed surface normal vector (3.3d)
{n} nth lattice point (2.4)
P conditional probability density (5.1)
P local fluid pressure (4.1)
p periodic pressure field (4.6)
pye cellular probability (5.15)
P mean conditional probability density (5.10)
R position vector (2.3)
r local cellular position vector (2.3)
R, discrete lattice-point position vector (2.5)
R Darcy-scale position vector (3.21b)
R;, vector fleld related to surface charge (3.43)
R initial, Darcy-scale position vector (2.10)
Sp particle-phase surface (3.2)
T temperature (5.7b)
t time (3.6a)
U mean solute velocity vector (5.16)
\%4 dyadic field related to fluid velocity vector (4.11)
v local fluid velocity vector (4.1)
VE dyadic field related to fluid velocity vector (4.11)
Vi total volume of interstitial fluid (2.1)
Vo total volume of medium (2.1)
Vo total volume of particulate phase (2.1)
Vs surface dyadic field (3.3d)
Vg surface velocity vector (3.3b)
v Darcy-scale seepage velocity (4.4)
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Charge transport through a spatially periodic porous medium 207

Greek letters

) Dirac delta function (5.1)

€ porosity (2.2)

€ permittivity (3.6a)
€ alternator triadic (3.31)
Ef, €p permittivity constants of fluid and particulate phases (3.6a)
1/k Debye screening length (3.1b,¢)
e fluid-phase viscosity (2.13)
P4 surface-excess charge density (3.1a)
5 surface excess charge of particulate surface (3.1b)
o8 surface excess double-layer charge (3.1¢)
1) solid volume fraction (7.2)

(also used to designate solid angle in (7.4))

¢ zeta potential of charged particulate surface (3.3b)
To total cellular volume (2.68)
Tp particulate-phase cellular volume (2.6)
Tt fluid-phase cellular volume (2.6)
07, bounding cell surface (3.45d)
4 effective electrical conductivity dyadic (3.40a)
@ voltage potential (3.7)

@ periodic voltage potential (3.17)
II vector field related to pressure (4.12)
" vector field related to pressure (4.12)
v Darcy scale gradient operator (3.21a)
Vp Darcy scale pressure gradient (4.7)
Vs surface gradient operator (3.13)

1. Introduction

Electrokinetic transductive and charge-mediated convective—dispersion phenomena
potentially arise in biological and synthetic membranes, underground soils, and other
porous matierals when exposed to external stimuli such as contact stresses, concen-
tration gradients, electrical and/or magnetic fields. The microscale origin of coarse-
(i.e. Darcy-) scale electrokinetic phenomena in charged, or sometimes non-charged,
porous materials is typically associated with electromechanical forces acting within
an interstitial fluid phase. These forces engender motion of unpaired charges (gath-
ered in the form of diffuse double layers about charged surfaces within the porous
material) or of charged, suspended colloidal particles, resulting in transport fluxes of
an electroosmotic, electrophoretic, streaming current, and/or fluid mass nature.

A prime example of this microscale—macroscale, electromechanical transduction
exchange concerns the function (Gross & Williams 1982; Grodzinsky 1983; Salzstein
et al. 1987) and characterization (Hoch et al. 1983; Frank et al. 1987) of connec-
tive living tissues. Tendons, cartilage, epithelial membranes — along with numerous
other types of connective tissues — are comprised of one of a few basic types of
cells enclosed within an extracellular matrix (EcM) typically constructed of colla-
gen and elastin fibrils, as well as of proteoglycans and their constituent, ionized,
glycosaminoglycans (Gaas) (Hay 1981). The charged ECM is itself bathed within an
aqueous, ion-containing fluid that occupies 70-80% (by weight) of the connective
tissue. Electrostatic and electrokinetic phenomena are commonplace in connective
tissues. For example, convective/diffusive transport of macromolecules across the
kidney’s glomerular basement membrane, is understood (Chang et al. 1975) to be
mediated by charge groups in the membrane; likewise, bacteria are known (Ham

Phil. Trans. R. Soc. Lond. A (1995)
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208 D. A. Edwards

1974) to be prevented from their transport through connective tissues before the se-
cretion of an enzyme capable of depolymerizing GAG protein molecules. The stress—
strain behaviour of articular cartilage, on the other hand, which functions within
synovial joints as a bearing material, is significantly influenced by electromechanical
transduction phenomena (Grodzinsky 1983).

Electrokinetic phenomena in porous media also arise in the removal of contam-
inants from soils by the application of a direct-current electric field (Probstein &
Hicks 1993; Shapiro & Probstein 1993). Owing to the intrinsic surface charge of soil
particles, fluid motion within the interstices of the soil may be established and con-
trolled by application of an electric field via electroosmosis. Contaminants may be
carried to cathode wells for removal by electroosmotic motion of the interstitial fluid,
as well as by electromigration or electrophoretic mechanisms.

Other examples of applied electrokinetic transduction and charge-mediated con-
vective-dispersion phenomena in porous media include electrophoretic separations
(Saville & Palusinski 1986), iontophoretic transport of drugs across mammalian skin
(Edwards & Langer 1994), and geological exploration (Frankel 1944).

Whereas microscale theories of electrokinetic phenomena in porous media have
been the subject of recent articles (e.g. Eisenberg & Grodzinsky 1988; Shapiro
et al. 1989), a rigorous, microscale—macroscale theoretical understanding of elec-
tromechanical transduction and convective—dispersion processes of the type described
above has yet to be acheived. It is the purpose of the present article to establish the
groundwork for such a theoryt.

At the same time, a large amount of theoretical research concerned with spa-
tially periodic porous media has focused in the past on the calculation of hydraulic
permeability (Hasimoto 1959; Snyder & Stewart 1974; Whitaker 1969; Sorensen &
Stewart 1974; Dullien 1975; Neira & Payatakes 1979; Sangani & Acrivos 1982; Zick
& Homsy 1982; Adler & Brenner 1984; Drummond & Tahir 1984; Lahbabi & Chang
1985; Larson & Higdon 1986; Edwards et al. 1990), electrical conductivity (or diffu-
sivity) (Meredith & Tobias 1960; Keller 1963; Jackson & Coriell 1968; Zuzovsky &
Brenner 1977; McKenzie et al. 1978; McPhedran & McKenzie 1978; Bergman 1979;
Perrins et al. 1979; Vogelius & Papanicolaou 1982; Chang 1983; Sangani & Acrivos
1983; Zick 1983; Zwanzig 1983; Carbonell & Whitaker 1983; Weaver 1984; Lehner
1986; Smith 1986; Gautesen 1988; Edwards & Davis 1995), and convective-dispersive
properties (Lee 1979; Brenner 1980; Auriault & Strzelecki 1981; Ryan et al. 1981;
Ene & Sanchez-Palencia 1982; Brenner & Adler 1982; Carbonell & Whitaker 1983;
Dill & Brenner 1983; Eidsath et al. 1983; Hoagland & Prud’homme 1985; Rubinstein
& Mauri 1986; Koch et al. 1989; Shapiro & Brenner 1988; Edwards et al. 19915,
1993). In the limiting circumstance of a non-charged porous medium through which
convects and diffuses a non-charged Brownian particle, the theoretical results of this

T Theories of spatial averaging in non-periodic systems, such as those that entail ensemble averaging
(Koch & Brady 1985) or volume averaging (Whitaker 1966), provide an alternative approach to that
which is pursued herein for periodic media. The principle advantage of the periodic hypothesis (which
hypothesis may, of course, be virtually removed upon identifying the contents of a unit cell with a
large degree of randomness (Adler 1992)), lies in affording rigorous averaging principles that may be
used to ensure that derived, dynamic macroscale coefficients possess both an Eulerian and Lagrangian
interpretation. Ensuring this physical duality is crucial in complex heterogeneous systems, such as those
involving microscale reaction, as confusion may arise in regards to the precise definition of macroscale
variables (see Edwards et al. 1993). (See ch. 9 of Rosensweig (1985) for a volume averaging approach to
magnetized, fluid-solid media.)
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paper coincide with the past works of Hasimoto (1959), Sangani & Acrivos (1982),
Zick & Homsy (1982), Adler & Brenner (1984) and Edwards et al. (1990) in re-
gards to hydraulic permeability; of Zuzovsky & Brenner (1977), Sangani & Acrivos
(1983), Edwards & Davis (1995) in regards to electrical conductivity; and of Brenner
(1980), Brenner & Adler (1982) and Edwards et al. (1991b) in regards to convective
dispersive properties.

Our focus herein is on a model porous medium comprised of a spatially peri-
odic (though arbitrarily complex, potentially disordered at a local scale), space-fixed
porous matrix exhibiting a generally inhomogeneous surface charge. In the interstitial
space there is presumed to flow a Newtonian liquid which contains various ionic con-
stituents. Whereas electroneutrality is assumed throughout the bulk of the interstitial
fluid, very near to the charged surfaces of the medium diffuse electrochemical double
layers exist wherein significant, highly inhomogeneous charge distributions prevail.
(The assumption of thin Helmholtz double layers greatly simplifies the analysis by
allowing the incorporation of (nonlinear) Maxwell stress effects into particle-surface
boundary conditions that are of a mathematically linear nature. This simplification,
however, somewhat limits the applicability of the theory (e.g. charge groups within
the extracellular matrix of cartilage are separated by approximately 1 nm, effectively
the thickness of electrical double layers). As discussed at the conclusion of this pa-
per, it is hoped in future contributions to extend the theory to double layers of finite
thickness.) Additional details of the system characterization are provided in § 2. This
is followed by a statement of the overall objectives of the paper. In §3 a scheme is
outlined for calculating the microscale electric field given knowledge of the applied
macroscale electric and pressure-gradient fields as well as of the microlevel nature of
the system. General formulas are developed for the effective conductivity dyadic and
streaming-potential coupling dyadic of the medium. In §4, a scheme for calculating
the microscale velocity field is proposed. From this we obtain formulas for determin-
ing the hydraulic permeability of the medium, as well as the medium’s electroosmotic
permeability. The micro- and macroscale level convective dispersion descriptions are
outlined in §5. Explicit examples of the theory are provided in §§6 and 7, and we
conclude with a recapitulation and discussion of the principal theoretical conclusions
of the paper in §8.

2. Geometry and basic physical description

A charged Brownian entityf, potentially comprised of a flexible cluster of hydro-
dynamically interacting, separately rigid, charged, non-conducting Brownian parti-
cles, each generally of non-spherical shape and joined together by internal potentials
(figure 1), is introduced into the interstices of a spatially periodic porous medium
(figure 2). The characteristic linear dimension a of the Brownian cluster is presumed
to be far smaller than that (I) characterizing the porous medium microstructure.
The porous medium is composed of a discontinuous solid (or particulate) phase of
total volume V},, and a continuous fluid phase of total volume V;. The overall volume
of the medium is

V; =Vi+ pr (21)
1 Whereas explicit attention is given in this article to the transport of charged colloidal particles,
the general paradigms developed herein are equally applicable to the transport of ionic species. This

application follows upon interpreting the electrophoretic mobility dyadic Mg as the ionic mobility dyadic
(see Edwards & Langer (1994), where this latter interpretation is made).

Phil. Trans. R. Soc. Lond. A (1995)
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microscale pore

Isubmicroscale Brownian cluster—l

surface potential {}

I surface potential {3 |

pore surface
potential {(R)

Figure 1. A flexible Brownian cluster, comprised of separately rigid, charged, Brownian particles
joined together by conservative potentials, convects and diffuses through the interstices of a
porous medium. The characteristic size a of the cluster is much smaller than the characteristic
pore size ¢, with the consequence that the cluster effectively convects with the velocity v(R) at
the interstitial pore-space point R, with cluster diffusion arising from a combination of thermal
Brownian motion and electrophoretic motion owing to the action of the E(R) field.

Darcy-scale

electrical field, E

= ol e

mean, interstitial
velocity field, v

Figure 2. A Brownian particle (or cluster of particles) moves within the interstices of a spatially
periodic porous medium. The medium contains space-fixed particles surrounded by a Newtonian
liquid which flows with constant, mean interstitial velocity ¥. Throughout the medium, in both
the particulate and interstitial fluid domains, an electric field acts, with Darcy-scale mean E.

exhibiting the porosity

e € ViV, (2.2)
The Brownian cluster is taken to be wholly confined to the interstitial space of the
medium, through which a Newtonian fluid flows with mean, homogeneous interstitial
velocity @. Given the cluster’s small scale relative to the tortuous pore-space scale
(ie. a/l < 1), it will essentially convect together with the local fluid velocity v(R)
at the point R about which it is situated at time t. In addition to its convective
motion, two possible sources of particle diffusion can be identified. The first pertains

Phil. Trans. R. Soc. Lond. A (1995)
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Charge transport through a spatially periodic porous medium 211

to the existence of an externally imposed electric field E(R), possessing Darcy-scale
mean E (cf. (3.18) and the discussion thereof). Owing to the net charge of the
Brownian particle, in the presence of the electric field E(R) it will undergo a ‘forced
diffusive’ motion My - E, where My is the cluster’s mean electrophoretic mobility
dyadic, obtained by a suitable coarse-graining of the instantaneous, configuration-
specific electrophoretic mobility of the Brownian entity over all of its possible internal
configurations (as discussed in § 5). The second diffusive mechanism, characterized by
the pointwise, ‘diffusion’ (literally, ‘convective—dispersion’) dyadic D(R), generally
combines a Brownian diffusion contribution with a position-dependent convective
contribution arising as a consequence of our assumption that the Brownian cluster
moves with a forced-diffusive motion Mpg-F in the presence of the E-field, when its
configuration-specific forced-diffusive motion generally differs from its mean value
My E.
The position vector R, possessing the useful decomposition,

R=R, +r, (2.3)
is drawn relative to a fixed origin O at the lattice point
{n} = {n1,n5,n3} = {0,0,0} = {0}, (2.4)

contained within the ‘zeroth’ cell 7,{0}. The location of all other lattice points {n}
of the spatially periodic array are specified relative to the zeroth lattice point {0}
by the discrete position vector R,,. In particular,

Rn = n1l1 + 77,2l2 + n3l3, (25)
where (11,15,13) are a set of basic lattice vectors, from which the volume 7, of a unit
cell may be deduced

o =11 (l2 x 13). (2.6)
The spatially periodic medium may thus be regarded as a space-filling assemblage of

unit cells, each of volume 7, and peripheral surface 97, and containing an identical
configuration of fluid and solid phases as every other unit cell. Let

To = Tt + Tp, (2.7)
where 7 is the cellular fluid domain and 7, the cellular particulate domain. Then,

Vi=> m{n}, (2.80)
n

Vo= mpin} (2.8b)
n

and Vo = Z To{n}. (2.8¢)
n

o0 o0

Here, ZE i Z Z : (2.84d)

n]=—00 Ng=—00 Ng=—00

Beginning with knowledge of the uniform Darcy-scale fields, Vp (corresponding
to a uniform applied pressure gradient) and E, as well as the detailed geometrical
microstructure of the porous medium and all pertinent physicochemical attributes
of the cluster-medium system, the final aim of the subsequent analysis is to derive

Phil. Trans. R. Soc. Lond. A (1995)
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212 D. A. Edwards

the following Darcy-scale convective—dispersive description for a swarm of identical,
charged (non-interacting) solute particles (i.e. clusters) in terms of the mean Darcy-
scale concentration C(R,t):

o g .wCc-D  IVC, (2.9)
a1
C= { ColB) (¢=0) (2.10)
0 (t<0)
(C,VC)— (0,0) as |[R—R|— oo. (2.11)

Here, R denotes a (suitably coarse-grained) Darcy-scale position vector and (U, D")
are a pair of (E- and Vp-dependent) phenomenological coefficients to be derived
in the course of the analysis as functions of the exact, microscale physicochemical
transport system.

The derivation of (2.9)-(2.11), with explicit formulas for (U, D), is to be ac-
complished in the following by way of three stages. In the first, undertaken in §3,
the exact, non-uniform microscale E(R) field is derived starting with knowledge of
the mean Darcy-scale field E and relevant details of the particular porous medium
concerned. As a byproduct of the analysis, we derive the Darcy-scale Maxwell equa-
tion

VxH=4J, (2.12q)

(this form of Ampere’s law being valid for steady-state circumstances; cf. (3.39a) for
the more general, time-dependent form of the equation) with the Darcy-scale current
flux vector (Katchalsky & Curran 1967; DeGroot & Mazur 1969)

_ 1l —
Juy=o-E+ —K,-Vp (2.12b)
25

Here, H is the Darcy-scale magnetic field intensity (A m~'), & the effective electrical
conductivity dyadic (2! m~!) of the medium, and K} a Darcy-scale cross-coupling
(streaming potential) transduction dyadic (C m~!). An explicit scheme is formulated
for calculating o and 7; given pertinent details of the porous medium’s physico-
chemical constitution. Both dyadics are demonstrated to be independent of the exter-
nal applied fields (E, Vp), depending only upon the geometrical and physicochemical
nature of the porous-medium/diffusing-species system. The effective electrical con-
ductivity o is shown to be symmetric and positive-definite.

With E(R) known and the Darcy-scale pressure-gradient field Vp specified, the
microscale v(R) field is next obtained. The consequence of this analysis is deduction
of the generalized Darcy’s law (Katchalsky & Curran 1967; DeGroot & Mazur 1969)

t——~K.Vp- LK E, (2.13)
Kt Kt
with K the hydraulic permeability dyadic (m?), _I?CE a cross-coupling (electro-osmo-
tic) permeability dyadic (C m™!), and u¢ the interstitial fluid viscosity. As with (&,
K1), an explicit scheme is formulated for calculating K and Ky from the porous
medium’s microscale description. The permeability dyadic K is shown to be sym-
metric and positive-definite.

Phil. Trans. R. Soc. Lond. A (1995)
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Charge transport through a spatially periodic porous medium 213

Finally, with the E(R) and v(R) fields, it is possible to determine (U ,D")
through a direct application of macrotransport theory as applied to spatially pe-
riodic media.

3. Determination of the microscale electric field

The fluid (V;) and particulate (V) phases of the porous medium are character-
ized by their respective permittivities (¢, €,) and electrical conductivities (o, oy),
each property pair taken to be uniformly constant in its respective phase. The ionic
constituents comprising the interstitial fluid are assumed uniformly distributed in
V4, satisfying the condition of electroneutrality at all interstitial points R — bar-
ring positions very near to the fixed particulate surfaces s,, whose surface-excess
charge density is denoted by pj(R). The diffuse ionic double layers existing near to
the charged particulate boundaries are assumed to be characterized by a screening
thickness (1/x) that is much smaller than either the characteristic length scale (Tfl/ %)

of the cellular fluid domain, or that (7';/ 3) of the cellular particulate domain. Since,
then, the mobile double layers are indistinguishable at the cell-level (micro-) scale
from the particulate surfaces sy, the ionic non-uniformities and concomitant charge
accumulation in these very thin regions are to be assigned to the (total) surface-excess
charge density distribution pf(R) (cf. Edwards et al. 1991a). It proves worthwhile,
nonetheless, to maintain the distinction between the mobile double layer charge and
the immobile surface charge by denoting the former as p3(R). In the absence of an
external E-field, we assume satisfaction of the electroneutrality condition

pi(R) = p3(R) + p3(R) = 0. (3.1a)

In the remainder of this article we will assume the fixed pj(R) and mobile p}(R)
surface-excess charge densities to be expressible in terms of the potential difference
((R) existing across the mobile double layer thickness (1/k). In particular, using the
Helmholtz model of electrochemical double layers (see Dukhin & Derjaguin 1974),
we have

Pp(R) = er((R) /1, (3.10)
whence from (3.1a),

Pi(R) = —e((R)/k7". (3.1¢)
Deviations from the expressions provided by (3.1b,¢), as may arise in conditions of
non-equilibrium (i.e. pS(R) # 0), will be assumed sufficiently small so as to con-
sider the expressions (3.1b,¢) valid for both equilibrium and non-equilibrium cir-
cumstances. We thus constrain our attention to the limiting scenario of very thin,
equilibrium, Helmholtz double layers.

We now imagine the existence of an externally imposed E(R) field combined with
the flow field v(R). These two microfields are characterized at the macro- or Darcy-
scale by the uniform constant vectors E and ¥ (whose definitions are respectively
provided in (3.18) and (4.4)). One consequence of the v(R) field is to produce a
surface current J5(R) at the particulate surfaces s, via convection of the mobile
double-layer ions. In particular,

Ji(R)=TJFR)+JF(R) (ReEsy), (3.2)
where the E-field-induced surface current flux vector J5¥ is given by
JP(R) = py(R)vs(R)  (RE€sp), (3.3a)
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214 D. A. Edwards

with
«Mmz—%qmﬂya (Re€ sy) (3.3b)
f

the apparent slip velocity (Keh & Anderson 1985) at the solid surface s, as derives
from the convection of double-layer ions. Here, Ej(R) is the tangentially directed
electric field at the point R on the particulate surface sp.

The second contribution JF shown in (3.2) also derives from convection of the
mobile double-layer ions, yet as a consequence of the applied pressure gradient Vp,
rather than of the applied electric field E. The small pressure-gradient-induced ve-
locities in the double-layer zone result in a finite surface current of the constitutive
form

TP (R) = —%cmm Vp  (Resy), (3.3¢)

of 1
with muaggjvm+nfw(Re%y (3.3d)

The spatially periodic dyadic field V(R) (units of m?), from which the ‘surface’
dyadic Vi(R) (units of m) derives, is related to the microscale velocity field v(R)
by way of (4.11). As will be discussed in the next section, the configuration-specific
dyadic V(R) is to be obtained by solution of the boundary-value problem (4.13) to
(4.15). Here, n designates the unit normal of the particulate surfaces sp.

In the absence of a finite charge density (consistent with very thin electrical double
layers), the E(R) field satisfies the trio of Maxwell equations

VxE=0 (ReV,), (3.4)
V-E=0 (ReV,), (3.5)
VXH=L+%@D (ReV,), (3.6 )

where the current flux vector of unpaired charges is taken to satisfy the ohmic con-
duction law

J,=0cE (ReV,). (3.60)
In the above, € and o are the respective permittivity and electrical conductivity
scalars, possessing the explicit values (e¢, €,) and (o, 05,) depending upon whether

the position vector R identifies either the fluid or solid particle phase. Equation (3.4)
is solved identically by

E=-Vé (ReV,), (3.7)
whence (3.5) gives
Vio=0 (ReV,), (3.8)
being subject to the boundary conditions
nx|E|=0 (R € sp), (3.9)
n-leBl=p, (Res,) (3.10)
s 9y
and —n-||cE| =Vs-JS + e (R € sp). (3.11)
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Charge transport through a spatially periodic porous medium 215

Here, we have used the notation

n-[lfll = fi(R) - fo(R)  (RE€sy) (3.12)

for the ‘jump’ in the generic (scalar, vector or tensor) field f across the singular
surface s, whose fluid-directed unit normal is n. Also,

V. €IV (3.13)
is the surface-gradient operator, with I, the surface idemfactor.

Thus far we have made no explicit use of the spatially periodic character of the
dependent-field quantities (E, J2, p5) appearing in the boundary-value problem
statement (3.7)—(3.11). This character follows as a consequence of the spatially peri-
odical nature of the medium and the a priori postulate that a uniform, Darcy-scale
field E is, for such a medium, manifested at the microscale level by a spatially peri-
odic E(R) field. This latter postulate, confirmed a posteriori below, may be expressed
mathematically as

E(R+R,)=E(R), (3.14)
or, simply, E=E(r). (3.15)

That is, the electric field E possesses an identical magnitude and direction in all
cells of the periodic medium at a given cellular position 7. The explicit appearance
of the cellular vector r in the argument of spatially dependent variables will, as in
(3.15), be used in the subsequent analysis to indicate the spatially periodic character
of microscale field quantities. This gives, from (3.4),

V & = spatially periodic. (3.16)

A fundamental decomposition theorem for spatially periodic gradients (Brenner
& Edwards 1993), permits, on the basis of (3.16)f,

#(R)=d(r)~R-E, (3.17)

—qet 1
where EY - f ds &. (3.184a)
087'0

The definition (3.18a) is equivalent to a volume-average definition of the Darcy-scale
electric field, as may be seen upon application of the divergence theorem (Brand
1947) to the surface integral, and use of the fact (cf. (3.9)) that the voltage potential
9 is continuous across sp, to rewrite (3.18a) as

E-= l/ EdV. (3.18)
To Jr,

The Darcy-scale quantity E defined by (3.18a) may be shown (Brenner & Edwards

t Equations (3.17) and (3.18) are easily seen to be self-consistent upon multiplication of both sides
of (3.17) by the directed surface-area element ds and integration of the result over the surface 8y of
a single unit cell. Use the fact that the surface integral of any spatially periodic function is necessarily
zero, and that

I:l dsR

70 7o
(with I the unit dyadic) to obtain from (3.17) the result displayed in (3.18).

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

/,//’ \\
'
{ A

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a\\

A

a

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

216 D. A. Edwards

1993) to be a lattice constant. This terminology is taken to mean that the value of
E is independent of either the manner of apportioning the periodic medium into
repetitive domains 7,, or of the (arbitrary) shape 97, of the cellular boundaries. In
addition to these physically expected attributes, at a length scale L much larger than
the scale [ of the microstructure of the porous medium, the field E defined by (3.18a)
may ultimately be expressed as (Brenner & Edwards 1993)

E=-Vo (3.19)
def 1
where B(R) & / sdv (3.20)
OTo
is the mean (macroscopically inhomogeneous) electrical potential and the vectors
_ 0 —
V=— R=R, 3.21a,b
By ( )

possess, at the course scale L, physically and mathematically meaningful interpreta-
tions as the Darcy-scale gradient operator and position vector, respectively.

Finally, upon substitution of (3.17) into (3.7)—(3.11), we arrive at a unit-cell
boundary-value problem for determination of the spatially periodic field @, given
knowledge of the applied field E:

V2 =0 (rer), (3.22)
subject to
n x HV%H =0 (r € sp), (3.23)
-n- HsV@H =pi(r)—n-E|e¢| (resp) (3.24)
and

o = v ] - v

o
—N—fvs.(gV) Vi+n E|o| + ”“ (res,). (3.25)
f

In the above we have made use of the fact that p3(r), pi(r) and ((R) are necessarily
spatially periodic functions owing to the spatial periodicity of the medium and of
the E(R) field. The boundary-value problem (3.22) to (3.25) is uniquely defined for

¢ to within an arbitrary constant.
It is instructive to calculate the magnetic field H(R) given knowledge of E(R),
via (3.6a,b). In combination, these relations give

Vx H=0cE + (% (eE) (ReV,). (3.26)

Since E, € and o are each spatially periodic functions, the product of any combination
of these quantities is also spatially periodic, whence

V H = spatially periodic. (3.27)
As in (3.17), we may now decompose H (R) as

H(R)=H(r)+ R-VH, (3.28)
Phil. Trans. R. Soc. Lond. A (1995)
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Charge transport through a spatially periodic porous medium 217
where
S5 def 1
VH = —/ ds H (3.29)
To 7o

possesses an interpretation as the Darcy-scale magnetic field intensity gradient.
Now, form the gradient of (3.28),

VH(R)=VH(r)+VH, (3.30)
and use the vector identity (Brand 1947)
Vxf=-e:Vf, (3.31)
where € is the unit alternator triadic, to obtain
VxH(R) =VxHr) +V x H, (3.32)
with Vxﬁzé/a ds x H. (3.33)

Integrate (3.32) over the volume 7, of a unit cell to find
1 - —
T—/VdeV=V><H+Ti/V><HdV. (3.34)

Application of Green’s theorem (Brand 1947) to the last integral of the above and
use of the boundary condition

nx|HI=J, (Res), (3.35)
shows that
1 = = 1
T—/VdeVszH—T—/ J? ds. (3.36)
Substitute (3.26) into the left-hand side of (3.36) to find
- 1 1
VxH:i/aEdV+g[—/6EdV}+—/ J; ds. (3.37)
To Jr, ot 7o Jr, To Js,

Now, we note from (3.17) and (3.22)—(3.25) that, owing to the linearity of the prob-
lem,

#(R) = g(R)-E + —h(R) - Vp, (3.38)
ot

where g(R) and h(R)f are vector fields independent of E and Vjp, dependent only
upon the geometry and physical chemistry of the medium (cf. (3.41)—(3.45) for a
verification of this statement). Substitution of (3.38) into (3.37) (via (3.7)), with
(3.2) and (3.3a—c) furnishes the Darcy-scale Maxwell equation

VX H = T+ %—(SE), (3.390)
where we have defined the Darcy-scale current flux vector
7u:E~E+/%?;-Vﬁ, (3.395)
£

1 Observe upon comparison of (3.17) and (3.38) that h(R) must necessarily be a spatially periodic
vector field. Explicitly, h(R) = h(r).
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218 D. A. Edwards
and with (cf. (3.18b))

CEy YL / eEdV. (3.39¢)

To Jry

In the relation (3.390) we have defined

a1 / oVgdv + & / (”d—gfc) V.gds (3.40a)
TO To TO S /‘Lf

Sp

as the effective electrical conductivity of the medium, and

—c de 1
K, dzf—§/ VhdV — —/ (V. ds (3.40b)

To o

as a mean (streaming potential) electromechanical coupling dyadic. The nature of
this pair of dyadics is further elaborated upon in § 8, following the example calcula-
tions of §§6 and 7.

The fields g(R) and h(R) appearing in (3.40a, b) are to be obtained, each to within
an arbitrary (physically irrelevant) constant vector, by solving the following pair of
boundary-value problems (cf. (3.7)—(3.11) with (3.38)):

(i) g(R) problem

Vig=0 (RcV,), (3.41)
nx|[Vg[[=0 (RE€ sp), (3.424)
-n-lleVgl =R, (REsy), (3.42b)
SE OR;
n-|ovgl =2, ((V,9) + (Re s,) (3.42¢)
e ot
and Vg spatially periodic (3.424d)

(see (8.2) for the condition upon g at the cell boundaries). Here, we have used the
representation

o =R E, (3.43)
where R is to be obtained simultaneously with g(R) from the above problem.

(ii) h(R) problem

V:h =0 (r em), (3.44)
n X [|[Vh| =0 (r € sp), (3.45a)
—n-Vh= fovS (V) (resy) (3.45b)
f
and h,Vh spatially periodic. (3.45¢)

One consequence of the spatially periodic character of h is the fact that the integral
of h over the boundary of a unit cell must vanish, i.e.

/ dsh =0. (3.45d)
A1,

This property is of particular utility in the implementation of approximate, dilute-
limit schemes, such as used in §7.
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Charge transport through a spatially periodic porous medium 219

It is useful to recast the boundary-value problem (3.41)—(3.42) in terms of a spa-
tially periodic equivalent of the g(R) field. This may be done by combining (3.17)
and (3.38) to give

3(r)=[R+g(R)]-E + %h(r) Vp. (3.46)

This reveals that g(r) = R+ g(R) (3.47)

is a spatially periodic vector field. Substituting (3.47) into (3.41)—(3.42) provides the
following unit-cell boundary-value problem for determination of the field g(r):

(iii) Alternative g(r) problem

Vig=0 (rerm), (3.48)
nx|[[Vg[[=0  (resy), (3.49)
—n-e(Vg-I)|| =R (res,) (3.50)
€ OR?
n-|lo(Vg-1I)| = p; Ve [C(Veg - L)) + 5 (T €sy) (3.51q)
and g,V g spatially periodic. (3.510)

Owing to the spatial periodicity of g(r), it follows from (3.50) that

R, = R (r)
is also spatially periodic. Moreover, as in (3.45d), it follows from the spatially periodic
nature of g(r), that

/ dsg=0. (3.52)
7o

In performing actual calculations, it may often prove easiest to solve for the spa-
tially periodic g(r) field via (3.48) to (3.51), rather than the (non-periodic) g(R) field
directly. The latter may then be found from (3.47), and this result used to calculate
the effective conductivity dyadic & of the medium. Alternatively, the g(r)-field may
be used directly in the formulation

&= —/ (I - Vg) dV——/ (pdgf ) ~V.g) ds, (3.53)

which provides an alternative expression to (3.40a) for the effective electrical con-
ductivity.

The scheme outlined above for calculating the effective electrical conductivity
dyadic & of a charged porous medium with fluid flowing through its interstices is
highly analogous to the macrotransport scheme for determining the effective diffu-
sivity of a point-size, surface-adsorbing solute through a spatially periodic medium
(Brenner & Edwards 1993). Indeed, in the common case of the latter wherein spa-
tial and surface cellular probability distributions are uniform, the two schemes are
identical upon making equivalences between our g(R) field and the B(R) field of
macrotransport theory (cf. e.g. (5.22)—(5.24)). Thus, the electrical conductivity scalar
o(r) in the present problem finds an equivalent in the diffusivity dyadic D(r) of
the macrotransport diffusion scheme, whereas the surface charge convection term
(—pSeeC/pe) possesses an equivalent in the surface diffusivity D (see §8 for further
discussion of this analogy).
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220 D. A. Edwards

4. Determination of the microscale velocity field

The equations governing fluid flow within the interstices of the porous medium
are asssumed at the microscale level to be those of Stokes flow (without a body force
puE, whose absence owes to the extreme thinness of electrical double layers)

wVv=Vp (RecW), (4.1)

with the continuity condition

V.v=0 (R e Vg, (4.2)
subject to the tangential slip condition (cf. (3.3b))
n-v=0, Is-vz—%gEs (R€s,). (4.3)
The mean, homogeneous, Darcy-scale seepage velocity vector
7 o Tl vdV (4.4)

Tf

is assumed to be spatially uniform. Owing to the spatial periodicity of the medium,
this constancy belies the fact that

v =v(r) (4.5)

whence, from (4.1) it is evident that the microscale pressure gradient field Vp is
spatially periodic. As in the decompositions (3.17) and (3.28), it follows that,

p(R) =p(r) + R Vp, (4.6)
where Vp & B dsp (4.7)
To Jor,

is a lattice constant, having an interpretation as the mean, Darcy-scale pressure
gradient.

Substitution of (4.6) into (4.1)—(4.3) furnishes the following boundary value prob-
lem for determination of the spatially periodic fields (v, p):

pViv=Vi+Vp  (rem), (4.8)

Vio=0 (rem), (4.9)

nowv=0, I -v= gas.(vas—ﬁ) (r € sp). (4.10)
f

Owing to the linearity of the problem defined by (4.8)-(4.10), we may decompose
(v, p) as

1., - 1 _

v=_—-V.Vp+—-VE.E, (4.11)
2 28

p=1II1-Vp+II" - E, (4.12)

where [V(R), II(R)] and [VF(R), IT®(R)] are spatially periodic (dyadic and vec-
tor) fields, dependent upon the geometry of the medium and its physicochemical
constitution, independent of Vp and E (as established below).

The fields (V, IT) and (V®, IT®) are to be obtained by solution of the following
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Charge transport through a spatially periodic porous medium 221

pair of configuration-specific, cellular, boundary-value problems, obtained by substi-
tuting (4.11) and (4.12) into (4.8)—(4.10) with (3.46) and (3.47):

(i) V -problem

VIV =VID+I (rcm), (4.13)
V-V=0 (r er), (4.14)
n-V=0 I V= ii—cvsh (r € sp), (4.15a)
£
V,VV spatially periodic, (4.15b)
and
(ii) VE problem
VAVE=vI® (remn), (4.16)
V- VE=0 (remn), (4.17)
n-VE=0, I,-VF=¢((Vsg-I) (resp), (4.18a)
VE, VVE gspatially periodic. (4.18b)
Upon substitution of (4.11) into (4.4) we obtain the generalized Darcy’s law
1 = 1o —
v=-—K -Vp— —Ky,E, (4.19)
Mt 12
where we have defined
— de 1
K< - / vav, (4.20 )
o TE
or, alternatively (upon use of (4.14) and (4.15a))
— 1
K=——/ rds-V (4.20b)
To 7o
as the (hydraulic) permeability dyadic (m?) and
——c def 1
K, _T_/ VEav (4.21a)
or, alternatively (upon use of (4.17) and (4.18a))
—c 1
Ky=—— [ rds-VF (4.21b)
To 7o

as the (electroosmotic) transduction coupling dyadic (N s m~2).

The dyadics K and KCE represent the permeabilities of the medium associated
respectively, with applied pressure-gradient Vp and electric E fields. They are lattice
constants of the medium, independent of the manner of apportioning the medium
into unit cells and of the applied Vj and E fields, as follows from the integrands of
(4.20) and (4.21), taken with (4.13) to (4.18). Further discussion of these dyadics is
provided in §8.
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222 D. A. Edwards
5. Convective—dispersive description

(a) Pore-level description

Since the dimensions of the flexible Brownian cluster depicted in figure 1 are ex-
ceedingly small relative to the dimensions of the interstices of the porous medium,
it effectively convects with the local fluid velocity V' (R) at each cellular-space point
R in the interstices of the porous medium. As discussed on qualitative grounds in
§ 2, diffusive transport of the cluster arises from both forced and Brownian mecha-
nisms. Specifically, we assume the transport of a ‘tracer’ cluster to be governed by
Smoluchowski’s equation

P
(?9_15 +V-J=6R-R)t) (R eV, (5.1)
where the convective—diffusive flux of tracer probability is assumed given by
J=vP+ Mg -EP—-D VP, (5.2)
subject to J=0 (R € sp) (5.3)

on the fixed-bed surfaces s, and
(P,J)|R-R|™ - (0,0) (m=0,1,2,...) as |R—R/|— o (5.4)

far from the point R’ at which the Brownian tracer was introduced into the system.
Here,

Pd°R = P(R,t|R)d*°R (5.5)
denotes the conditional probability that the tracer is located at the interstitial point
R at time t, given that it was introduced at t = 0 at R'.

From knowledge of P, we may determine the pointwise concentration field C'(R, t)
by means of the superposition theorem

C(R,¢) = /V Co(R,0)P(R,{|R)) R, (5.6)

where Cy(R',0) denotes the initial concentration profile of solute particles (or clus-
ters).

The electrophoretic mobility M (R) of the tracer, as well as its diffusivity D(R),
are presumed to be known phenomenological functions calculable from the the par-
ticular microstructure of the (effectively point-size) tracer. In the simplest case of a
spherical Brownian particle of radius a, with a uniform zeta potential, (g = const.,
we havet

My—1528 p_g K

i 6msa

The former of these relations is the classical Smoluchowski result for the electropho-
retic mobility of a sphere in the absence of surface current (Levich 1962). The latter
is the classical Stokes—Einstein diffusivity of a spherical Brownian particle. Non-

spherical particles possessing uniform zeta potential, (g = const., are characterized

(5.7a,b)

1 In applications involving charged molecules, rather than charged colloidal particles, the electropho-
retic mobility Mg is to be interpreted as an ionic mobility. For further consideration of this physical
scenario, see Edwards & Langer (1994).
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Charge transport through a spatially periodic porous medium 223
by
My, = Ezﬁ D = kT M, (5.8a, b)
f

where M is the hydrodynamic mobility dyadic of the particle, to be determined by
calculating the hydrodynamic force acting upon the non-spherical particle in a uni-
form, zero-Reynolds number streaming flow (Happel & Brenner 1983). The fact that
the electrophoretic mobility M is identical for spherical and non-spherical particles
has been established by Morrison (1970). This, however, is true only for particles ex-
hibiting a uniform zeta potential (g = const. (Anderson 1985) and negligible surface
current (Levich 1962).

In the more general case of a flexible, Brownian cluster composed of two or more
charged, rigid Brownian particles bound together by attractive/repulsive potentials,
the mean electrophoretic mobility and diffusivity may be obtained by a suitable
coarse-graining over all of the cluster’s internal configurations in the course of its
translation, extension and rotation within a uniform electric field (this scenario being
appropriate for the present case of a cluster whose dimensions are very small relative
to the pore-space scale and the length-scale of spatial gradients in E(R)). Such a
coarse-graining theory exists in the form of macrotransport analysis, as first outlined
by Brenner et al. (1987). The unique feature here is the fact that the individual forced-
diffusive motions of each rigid particle in the cluster are related to that particle’s
electrophoretic, rather than hydrodynamic, mobility.

In general, the mean electrophoretic mobility Mg of the cluster will be non-
isotropic and dependent upon the orientation of the applied electric field. An ex-
plicit example in this context is the calculation of Fair & Anderson (1990) of the
electrophoretic motion of a charged dumbbell. Likewise, the ‘diffusivity’ D of the
cluster will combine Brownian diffusive and convective-diffusive contributions, the
latter following from the fact that, in general, the cluster will move at different par-
ticle velocities depending upon its instantaneous configuration in the applied electric
field. The calculation of Nadim & Brenner (1989) for a flexible Brownian dumbbell
in an external field provides an explict example, although their use of hydrodynamic
mobilities in representing the convection of the cluster in the external field must in
the present context be replaced by use of electrophoretic mobilities.

Interestingly, in the case of a flexible cluster of charged, Brownian particles for
which the zeta potential of each individual particle of the cluster is identical and
uniform, the mean electrophoretic mobility dyadic of the cluster is simply (Fair &
Anderson 1990) that given in (5.7a), and the cluster’s diffusion dyadic is simply the
mean Brownian diffusion dyadic of the cluster. In other words, there is no convective
contribution to the cluster’s diffusion dyadic D(R) unless the zeta potentials of the
individual particles comprising the cluster are either unequal or non-uniform on each
particle’s surface. A further possibility, not addressed by Fair & Anderson (1990), is
that there exists a surface current on each particle surface, in which case a convective
contribution to D(R) can generally be expected.

(b) Darcy-scale description
The theory of macrotransport processesf for discontinuous systems may be directly
applied to the preceding scenario to develop the effective, Darcy-scale description

t The text of Brenner & Edwards (1993) may be consulted for a thorough discussion of the derivation,
interpretation and specific application of the theoretical material reviewed in this subsection.
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224 D. A. Edwards

in terms of coarse-scale phenomenological coefficients. In particular, as originally
established by Brenner (1980), in the long-time limit

t> r2%/|D|, (5.9)
the mean conditional probability scalar
_ o 1
P(R, - R, tlr') < —/ P(R, — R.,r,tlr") dr, (5.10)
To Jro{n}

obtains an asymptotic limit (cf. (3.21b))
P(R,tR,v")~ PR, tR), (5.11)

independent of initial local-scale conditions 7/, satisfying the following Darcy-scale
description:

oP

S TV T =8R- R)S(), (5.12)
J=UP-D -VP, (5.13)
subject to (P, 7) — (0,0) ‘Tz - R” ~ o0, (5.14)

(The above description is easily converted into concentration variables, as in (2.9)-
(2.11), upon use of the superposition theorem (5.6).) Here, U and D" denote the
Brownian particle’s mean velocity and dispersivity, respectively. They are defined in
terms of the microscale data by the pair of relations,

”’D"*:/ Pe(vB)! . (sym D) - VB dr (5.15)

=%

and U =/ J5° dPr. (5.16)

The quantities Pg°(R) and B(R) are spatially varying microscale fields to be deter-
mined from knowledge of the local system by solving a pair of unit-cell, boundary-
value problems. The Pg°(R) field satisfies

V- -JF=0 (r € ), (5.17)

J&® =UP® - D.-VP®, (5.18)

U=v+ Mg E, (5.194)

n-Ji°=0 (r € sp), (5.19b)

Ps°, VS  spatially periodic (5.20a,b)

and / Py dPr = 1. (5.21)
7

With P§°(R) known, a convenient method for obtaining the B(R) field involves
defining the spatially periodic field
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Charge transport through a spatially periodic porous medium 225

Darcy-scale
electrical field, £

I LY
h y
— y * . v & surface charge, py
— - hal
—

mean, interstitial ’ N
velocity field, v 'R, !
] ]

g Y ! !

L |

Figure 3. A two-dimensional porous medium composed of vanishingly thin, uniformly charged

plates between which flows a Newtonian liquid, parallel to the plates, with mean interstitial
velocity ©. An electric field acts, with Darcy-scale mean E.

which represents the solution of the boundary-value problem

V. (PO°°D : vB) ~J®.VB = P> (U*— U+ vu) +2(symD) - VP® (re ),

(5.22)
PPn-(D-VB-D)=0 (res,), (5.23)
B is continuous across Sp
and B,VB spatially periodic. (5.24)

As previously discussed following (3.53), the B-field is directly analogous to the g-
field appearing in the mean electrical conductivity definition (3.40a). Similarly, B is

analogous to g. Like the vector g, the vector B is defined by (5.22)—(5.24) only to
within an arbitrary, physically irrelevant constant vector.

6. Example 1: layered medium of charged parallel plates

As a first explicit example of the foregoing theory, consider the scenario depicted
in figure 3. A homogeneous electric field

E—i,F (6.1)

is applied in a direction parallel to a two-dimensional porous medium consisting of an
infinite number of very thin solid plates whose uniform surface charge (on either side
of the plates) is pj,. Sandwiched between the plates are parallel layers of thickness h
of a Newtonian fluid of viscosity ¢ and electrical properties (er, o¢). In addition to
the field E, a Darcy-scale pressure gradient

Vp = i,dp/dx (6.2)

is applied to the layered medium.

A dilute collection of charged, Brownian spheres, each of radius a and possessing
a uniform zeta potential (g, is placed within the interstices of the medium. Each of
the spheres is characterized by the electrophoretic mobility and diffusivity relations
provided by (5.7a,b).
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226 D. A. Edwards

In order to cast this problem in terms of the theory define the ‘volume’ (literally,
surface area) of a unit cell by

TO = hL) (6.3)

where L is an arbitrary length measured parallel to the solid surfaces. Since the
plates are infinitesimally thin,

To = Tt, 7 = 0. (6.4a,b)

Choose the local, cellular position vector R as originating at the edge of a unit cell,
as shown in the figure. Then,

T =1,T + 1Y 0<z<L,0<y<h). (6.5)

(a) Determination of the electric field
For the circumstances of (6.1), we begin with the a priori postulate

whence, from (3.7), we have that
d
E(y) = —-—=9(X .
(1) = ~ 5 #(X.), (6.7
where R=1,X+1iY (roo< X <00,—0 <Y € ) (6.8)

is a global position vector defined in the global coordinate system (X,Y’) originating
at the zero cell {0}. According to (3.17),

Given the current geometry, we additionally assume, subject to a posteriori veri-
fication, that

? = d(y). (6.10)

Next, use (3.22)-(3.25) to obtain the following boundary-value problem for deter-

mination of @:

d*o
- = < , .
G =" O<y<h (6.11)
& = const., y=0,h, (6.12)
dé
— Ef.a.?_j foed pu’ y = 0, h, (613)
do
- O'f'a:';— =0, y=0,h. (6.14)
The solution to the problem posed by (6.11)-(6.14) is simply
& = const. (0<y <h). (6.15)
In combination, (6.1), (6.9) and (6.10) give, with (6.15), the result
E(y) = E = const. (6.16)
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Charge transport through a spatially periodic porous medium 227

This constitutes our solution for the microscale electric field. Note, for subsequent
purposes, that, from (6.13),

i = 0. (6.17)

(b) Effective electrical conductivity

To calculate the effective electrical conductivity & of the medium, we choose to
solve the spatially periodic boundary-value problem (3.48) to (3.51), and subse-
quently to use (3.47) to obtain a solution for & via (3.40a). Equations (3.48) to
(3.51) simplify considerably with the a priori postulate

g ="13(y) (6.18)
In particular,
@—0 (0<y<h) (6.19)
dy2 - X y ) .
dg
— =1 =0, h. 6.2
oy V=0 (6.20)
The solution to this problem is simply
gJ = y + const. (0<y <h). (6.21)
From (3.47) we obtain (for fixed {n})
g = —i;%, (6.22)
to within a (physically arbitrary) constant. Finally, from (3.40a), we have
.. pee )
O =11, | of — 2 . 6.23
( ‘ peh (6.23)

This expression reveals that the effective electrical conductivity & is a combination of
the electrical conductivity o¢ of the fluid and the surface current term p§es(/psh. As
the spacing h between layers diminishes, the contribution from the surface current to
the overall conductivity of the medium increases as a consequence of the diminished
specific surface (i.e. surface-to-volume ratio) 1/h. Observe that a factor of 2 enters
into the above expression for the effective electrical conductivity & of the medium
by virtue of there being two double layers associated with each layer of interstitial
fluid in the layered medium.

According to (3.1c), for a positively charged particulate surface (( > 0), p§ is
negative, whence surface current amplifies the overall conductivity by an amount
|205¢e¢C/peh]. In fact, the effective electrical conductivity & is amplified by surface
current effects regardless of the sign of the fixed surface charge, since pSee(/peh <0
for both positively and negatively charged solid surfaces.

(¢) Determination of the velocity field

The spatially periodic velocity and pressure fields follow from (4.11) and (4.12).
In the present case, we assume

V =i,V (y); VE =i, VE(y), (6.24a, b)
T =i, (y); " =i, 115 (y). (6.25a, b)

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

4

TaNsactions | HE ROVAL

SOCIETY

OF

4

OF

Downloaded from rsta.royalsocietypublishing.org

228 D. A. Edwards

Substituting the above postulates into (4.13) to (4.15) yields (upon utilizing the fact
that h = const., as follows from (3.44)-(3.45))

d?v
— =1 < h), 6.26
e (0<y<h) (6.26)
drr
—=-1 0< h), 6.27
4y (O<y<h) (6.27)
V=0 y=0h (6.28)
Likewise, (4.16) to (4.18) give (with (6.21)),
d?vE
TV 0 (0<y<h), 6.29
e (0<y<h (6.29)
dire
—0  (0<y<h), 6.30
dy (0<y<h) (6.30)
VE=_e¢  y=0,h (6.31)
Equations (6.26)—(6.28) furnish the solutions
V=30 -hy) (0<y<h), (6.32)
II = —y + const. (0<y<h) (6.33)
and (6.29)-(6.31) give
VE=—g¢ (0<y<h), (6.34)
IT" = const. (0 <y <h). (6.35)
Upon combining (6.32)-(6.35) with (6.24) and (6.25), we obtain the following
solution for the microscale velocity field (cf. (4.11)):
1 2 —_ 6f<——
v=—(y* —yh)Vp— —E. 6.36
o W TYMVE - (6.36)

The first term in the above relation is the standard result (Bird et al. 1960) for
Poiseuille flow between parallel plates, whereas the second is the usual result (Levich
1962) for electroosmosis between charged flat plates.

(d) Effective permeability and electrokinetic cross-coupling properties

Finally, (upon utilizing the fact that h = const.), we may use (3.40b), (4.20) and
(4.21) with the results (6.24), (6.32) and (6.34) to obtain

K =1i,i,(h?/12) (6.37)
for the hydraulic permeability of the medium and
Ky = Ky, = i1, (66C) (6.38a, b)

for the electrokinetic transductive coupling dyadics. Once again, these two expres-
sions are in agreement with those appearing in the literature (see Bird et al. 1960;
Levich 1962). We note that the equivalence between the streaming-potential (Kp)
and electroosmotic (f;) cross-coupling dyadics is in accord with non-equilibrium
thermodynamic considerations (DeGroot & Mazur 1969) (cf. (8.1)). The expressions
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Charge transport through a spatially periodic porous medium 229

(6.37), (6.38a), (6.38b) give simply the results for the hydraulic permeability, stream-
ing potential current and electroosmotic permeability for the case of Poiseuille flow
between charged parallel plates in the presence of a homogeneous electric field.

(e) Convective dispersion
Equations (5.17)—(5.21) are solved in the present circumstances by

1 1
Pr=—=-—. .
1
Thus, J§ = E(U + My - E). (6.40)
Substitute (5.7a), (6.2), (6.6), (6.16) and (6.36) into the above to obtain
111 dp e+ (s
JP =iy |— W —yh)—— - =E|1-2]]. .
5 =inpg |50 - - B (1- 8 (6.41)
With use of the definition (5.16), the preceding expression affords the result
U =5+ M -E, (6.42)
where (cf. (4.19), (6.37) and (6.38b))
_ (R dp | e
is the mean fluid velocity and
M = IEfCB/,uf (644)

the mean electrophoretic mobility of the charged sphere through the porous medium.
This is the classical Smoluchowski formula (cf. (5.7a)).
The equations for the B-field may be simplified by the a priori assumption:

B =i,B(y) — (i,x + 1,y). (6.45)
Hence, from (5.22) to (5.24), we have, with the preceding findings,
d’B h? 1 dp
D = — —(y® —yh)| = 6.46
dyQ 12/1'f+2/1'f(y Y ) d.’E, ( )
subject to dB/dy =0 y=0,h. (6.47)
Here, we have used
D=1D, D= KT . (6.48)
6T e
Equations (6.46) and (6.47) furnish the solution
2 3 2 = '
dB _ _ A" _y__+} Yy | dp (6.49)
dy Dug |12 2 \3h? 2h)| dx

Substitution of the above into (5.15) yields the known (Brenner & Edwards 1993)
result

e h2 h? dp\’
- oy °p 6.50
D =1ID+%t 550 <12Mf d:v) (6.50)

for the effective dispersivity dyadic of the solute through the layered medium. The
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[ charged circular cylinders |

Darcy-scale
electrical field, E

s O O\O

— 2a |l=—

mean, interstitial
velocity field, v Q Q Q

Figure 4. A two-dimensional porous medium composed of charged circular cylinders in a square
array. A Newtonian liquid flows through the interstices with mean interstitial velocity T. An
electric field acts throughout the medium with Darcy-scale mean E. The fields ¥ and E are
directed at arbitrary angles in the perpendicular plane to the axes of the cylinders.

absence of an electrical contribution to the above result for the effective dispersivity
of the charged species through the porous medium owes to the homogeneity of the
electrical-field-induced convective motion of the particle. This result is peculiar to
the present problem. In particular, since the portion of the velocity field (cf. (6.32))
produced by the E-field does not depend upon local position within the porous
medium, E fails to produce a dispersive effect, as mobile, charged particles will
travel with the same E-driven velocities irrespective of their location within the
medium.

7. Example 2: two-dimensional array of circular cylinders

This example possesses particular relevance to electrokinetic transductive phenom-
ena in cartilagenous tissues (Frank & Grodzinsky 1987a,b), and offers an opportunity
for direct comparison with the results of Eisenberg & Grodzinsky (1988).

Consider the two-dimensional porous medium depicted in figure 4, composed of
non-conducting circular cylinders of radius a fixed within a spatially periodic ar-
ray. For definiteness, the array is depicted as being square, though the manner of
arrangement is unimportant for the dilute conditions of interest, i.e. for which the
volume fraction of the cylindrical bed-particles ¢ is very small,

¢ < 1. (7.1)

The particles are presumed to be non-conducting, with uniform surface charge. Oc-
cupying the interstitial space is a conducting Newtonian fluid. The electrochemical
double layers at the cylindrical particle surfaces are taken to be extremely thin, con-
sistent with the preceding analysis. At the gross, Darcy-scale of the medium, uniform
electrical E and pressure-gradient V7 fields are applied.

Our aim is to calculate the Darcy-scale electromechanical properties (&, K, T{_;,
K}) of the medium to leading order in the bed-particle volume fraction ¢. This
task proves more challenging (and illuminating) than the prior example owing to
the complexity of the medium and the greater degree of transductive coupling that
occurs. Because of the explicit separation that is made in the present theory between
E-induced and Vp-induced transport, combined with the configuration-specific na-
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Charge transport through a spatially periodic porous medium 231

charged cylindrical
bed particle

cylindrical approximation
to unit cell periphery

Figure 5. The unit cell periphery 7, is approximated as being cylindrical, with the center of
the cylindrical bed particle coinciding with the center of the cell.

ture of the microfields (g, h, V, VE) appearing in the integrals (3.40a), (3.40b),
(4.20) and (4.21), it is possible to solve for the dyadic quantities (7, K, Kp, Ky)
for arbitrarily oriented (E, Vp), without specifying their magnitudes. This contrasts
with the less formal scheme of Eisenberg & Grodzinsky (1988), to which comparison
is to be frequently made in the subsequent analysis.

Owing to the smallness of the volume fraction ¢, the precise nature of the unit
cell boundary 07, is unimportant, at least to leading order in ¢. This affords a con-
siderably simplified treatment of the various boundary-value problems encountered
in the theory. In particular, it is useful to imagine the boundary of a unit cell to be
cylindrical, of radius b. This configuration is shown in figure 5. We note that,

¢ = (a/b)*. (7.2)

(a) Determination of V(r) and K
Owing to the nature of (IT, V') as configuration-specific fields, independent of the

orientation of any applied external field, and given the isotropic nature of the array,
we have

II(r) =0, (7.3)
V('I‘) = iRiRVRR(R) + i¢’i¢V¢¢(R), (74)

at least to leading order in ¢. Here, (ig, ¢4) represent unit vectors associated with
the circular cylindrical coordinate system (R, ¢) shown in figure 5. Equations (4.13)-
(4.15) therefore reduce to

V2V =1, (7.5)
V.V =0, (7.6)
Vv-Vh  atR—a (7.7)
ot
- 1 2n
K:—;/ trip - Vdo at R="b. (7.8)
0

The last condition at the periphery of the unit cell follows from the integral condition
(4.20b): the integral condition itself derives from the spatially periodic character of
V, and effectively serves to replace the explicit condition (4.15b) in the present
approximation.
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232 D. A. Edwards

In component form, (7.5)—(7.8) are found to reduce to the respective equations
d? V&R l dVRR 2

dR? R dR - ﬁ(VRR - V¢¢) = ]'7 (79)
d2V¢¢ 1 dVys 2
& TRar T ﬁ(VRR —Vsy) =1, (7.10)
dVgr 1
AR T E(VRR = Vis) =0, (7.11)
e:C _
Ver =0, V¢,¢, = —hR(a) at R = a, (7.12)
ora
VRR + V¢¢ = —2F at R = b. (713)

(To obtain the condition (7.13) from (7.8) it is necessary to use the continuity con-
dition (7.11) and maintain only the leading order term resulting from the integrand
of (7.8).) Here, K = |K|, and hp(R) is a scalar field to be encountered (cf. (7.26)-
(7.28)). Given the forms of these equations, it is useful to define the quantity

1Y Vg + Vg (7.14)

Substitution into (7.9)-(7.13) reveals that the field n(R) satisfies the boundary value
problem

d?n  1dng
T T pap =2 (7.15)
_ el _
n= O'fCLhR(a) at R = a, (7.16)
n=-2K atR=0b (7.17)

possessing the solution

2K + 3(a® + V) + eChr(a)/ota
= In(b/a)

a ora

R\ 1, ., o €
]m<—>+§uz—a)+l—m4@.w1&

Now, substitute (7.4) into (4.20) for the Darcy-scale permeability dyadic, and use
the relations
iR = 1, COS ¢ + 1, Sin @, 14 = —1, Sin ¢ + 4, cos ¢,

with (4,,1,) unit Cartesian basis vectors, to obtain

K =iyi, Koy + iy Ky, (7.19)

o o o 1 b
where K,=K, =K= —55/ n(R)RdR. (7.20)

Substitute (7.18) into the above expression to find (with, now, ¢ the solid fraction
defined by (7.2))

K ~ {b*[In(b/a) — 1] + O(¢In¢™"). (7.21)
The above result for the hydraulic permeability of the medium agrees with the

leading-order result of Happel (1959). It agrees as well, to o(¢In¢~!), with Eisenberg
& Grodzinsky (1988), in the limiting cases of the latter study wherein there is no
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Charge transport through a spatially periodic porous medium 233

surface conduction and the double layers are extremely thin. Higher-order deviations
from the circular-cell results of Happel (1959) and Eisenberg & Grodzinsky (1988)
are presumed to reflect the approximate nature of the cylindrical cell assumption
used in theirs and our analyses.

(b) Determination of h(r) and Ky
The explicit solutions for Vi r and Vg, derive from substitution of the permeability

result (7.21) into (7.18), followed by use of the decomposition (7.14), the continuity
equation (7.11) and the boundary condition (7.12). This gives,

Vrr = —1(b® + d®) [In(R/a) — 3] + +(R? — 2d°) — §b%a®/R?, (7.22)
Voo = =10 + ) [In(R/a) + 5] + §(3R® — 20%) + §(b%a®/R?) + (stth)/?;a?)é

The surface dyadic V;, whose definition is provided by (3.3d), may then be seen
to possess the solution

o1 g
Vs. = 14y [%(bz - a2) + %h}{(a)jl (724)

by use of (7.4) with (3.1¢), (7.22) and (7.23). This result enters the boundary condi-
tion (3.45b) for the h(R) field. The latter is found to possess the form

h =igrhgr(R), (7.25)
such that (3.44)—(3.45), with also (7.24) reduce to the respective equations
1d dhr hr
— ) 2t = 2
RdR (R dR ) R? 0 (7:26)
th Efg 1 2 2 pfi
R I (2 h = 2
R~ ap [Qa (b* —a®) + p— r(a) at R = a, (7.27)
hr=0 at R =». (7.28)

The latter condition follows from the integral condition (3.45d) (cf. (7.8) and the
discussion thereof).
Equations (7.26)—(7.28) exhibit the solution

e¢C v — a? ] ( b R>
=5 b(——=+=). (729
R 2/,Lf \:bQ (1 — pEEfC//,LfO'fa) + a? (1 + pEEfC//,LfO'fa) R b ( )

Substituting this result into (3.40b) and utilizing also (7.24) furnishes
Kp = 1,0, Kp,, +iyi, Kf,,, (7.30)

18
1 — pieeC/peota 0(9). (7:31)
This constitutes a leading-order approximate solution to the streaming-potential elec-
tromechanical coupling dyadic. As with (7.21), this result is found to be in leading-
order agreement with the (zero surface conduction, very thin double layer) result of
Eisenberg & Grodzinsky (1988) (observe that they report their results in terms of
the fixed surface charge pj, rather than the double-layer charge pg, resulting in a
sign flip in accordance with (3.1b,¢)).

where Kp,, = Kp,, =
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234 D. A. Edwards

(¢) Determination of g(r) and &
We begin with the a priori postulate

g = irgr(R), (7.32)
such that (3.48)—(3.51) simplify to the respective equations
1d dgr Jr

- L RN ) 7.33
RdR (R dR ) R? ’ (7.33)
d.!i + Pd€fC gR =1+ pdgfg at R = a, (734)

dR ueoga? peoea
gr=0 at R="b. (7.35)

The condition at the outer cell surface (R = b), similar to condition (7.28), replaces
the condition of spatial periodicity and is a direct consequence of (3.52).
Equations (7.33)—(7.35) have as their solution

. +Pf1€fC/0f,ufa] (_g ) ,
gn =0 [1 — pseel/otpca 7 TR | +0@). (7.36)

We note that
Vg = ipiegr(a)/a,
whence, substitution of (7.36) into (3.53) is found to give

T = 1,8,0 45 + 10,0y, (7.37)
with
_ 1+ pist/ufafaﬂ )
Ope =0y, ~op |1 —2 + O . 7.38
w00 12 (HASIIL) | o) (7.38)

Equation (7.38) agrees, once again, with the comparable result of Eisenberg &
Grodzinsky (1988) to terms of the indicated order.

(d) Determination of VE(r) and Ky,

The calculation of the electromechanical coupling dyadic f; requires evaluation
of the microscale dyadic V(r). As in (7.3) and (7.4), we begin with the initial,
leading-order postulates

() = 0, (7.39)
VE(r) = igirVEr(R) + i4isV(R). (7.40)

Upon substituting the above into (4.16)—(4.18), we find
EVE,  1dVE, 2

dR2? R dR - R2 (VI-IZER - Vdfi)) =0, (741)
d2VE  1dvE 2
dqu i d](g + ﬁ(V,ER ~VvE) =0, (7.42)
dvk. 1
d]’? + E(V,ER —- Vi) =0, (7.43)
Vir=0 at R=a, (7.44a)
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1+ pieeC/peoca
1 — piesC/prota

Ve + Vi =-2Ky  at R=b. ' (7.45)
As in (7.14), define the scalar field

Vo = —eC |1+ at R = a, (7.44b)

def
n" = Vir + Vs, (7.46)
and substitute this into the above to arrive at the boundary value problem

d2nE 1 dnE

1R? +EE§—O’ (7.47)
1+ PSEfC/Mfoa]
E d

=—e( |1+ - at R=a, 7.48
K ¢ [ 1= pgeeC/ peosa (748)
n® = —2Ky, at R=b. (7.49)

These yield the solution

c — s -1 E i
P — { 2K + 26¢¢ (1 — pierC/ usoca) }ln g —9ei( (1 _ @Efﬁ) . (7.50)

In(b/a) pota
from which, upon substitution into (4.21) we ultimately find
Ky = i1, K gy + iyiy, K gy, (7.51)
where

C

—c — . 10
Koo = Ky = K = —5 [ (RIRAR.
- e
1 = pesC/peoca
To the specified order, this result is identical both with the comparable result of
Eisenberg & Grodzinsky (1988) and with the streaming-potential coefficient (7.31)
obtained previously. Thus, as in the previous example (cf. (6.38)), we find identical

expressions for the cross-coupling electromechanical transduction dyadics, in accor-
dance with non-equilibrium thermodynamic constraints (DeGroot & Mazur 1969).

+O(plngp™t). (7.52)

8. Recapitulation and discussion

In §§2-5 we derived, starting from an exact, microscale, physicochemical charac-
terization of the periodic porous medium, the Darcy-scale electrokinetic transduction

matrix
Ju [ —u;7 'Ky E 1
— = _155C 155 . _v_ 3 (8 )
v -y Ky  pe K p
relating macroscale current flux 7L and mean interstitial velocity @ to the applied
electric E and pressure-gradient Vp fields. In addition, we have offered an ex-
plicit scheme for calculating the convective U and dispersive D properties of the

macroscale transport equation (2.9) for a charged, Brownian particle constrained to
the interstitial space of the porous medium.
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The material dyadics (&, K, f;, KCE) have been respectively defined by (3.40a),
(3.40b), (4.21a) and (4.20a) in terms of the four spatially dependent microscale fields
(g, h, V, VE). These latter directed field quantities are to be obtained by solution of
the respective boundary value problems (3.41)—(3.42); (3.44)-(3.45); (4.16)—(4.18);
(4.13)—(4.15). Below, we offer discussions of various properties of the macroscale (&,
K, Ky, Ky) and microscale (g, h, V, VF) fields by reference to their defining
equations as well as to the examples worked out in §§6 and 7. (The macroscale
convective—dispersive properties (U*, 5*), which are related to the microscale fields
(P§°, B) by their defining relations (5.15) and (5.16), have been discussed elsewhere
(Brenner & Edwards 1993).)

(a) Conduction problem (&, g)

The non-periodic microscale field g(R) describes the local dependence of the volt-
age potential #(R) upon the macroscopically uniform, applied field E. This may be
seen from (3.38). Note, moreover, from (3.7) and (3.17), that for a purely homoge-

neous medium, E(R) = const. = E, whence ¢ = const., or
(R)=-R-E.
Thus, for a homogeneous continuum
g=—R.

Recognition of this limiting behaviour proves helpful in the solution of specific prob-
lems. Equation (3.41), which governs the g-field in the bulk fluid and particulate
domains, reflects the fact that the porous medium is electrically neutral, exhibiting
zero volumetric charge density. The continuity (3.42a) of the tangential component of
Vg is equivalent to a stipulation that g (i.e. ¢) be continuous across the particulate
surfaces s;,, whereas the normal component of Vg at the charged particulate surfaces
sp of the porous medium may exhibit discontinuities owing to a surface current flux
(cf. (3.42¢)) into the bulk domains or simply a discontinuity of electrical conductivity.
The production of net surface-excess charge at s, is governed by (3.42b).

Whereas Vg is spatially periodic, g itself is not. It is in principle straightforward to
show (see Brenner & Adler 1982) that for a fixed cell {n}, the appropriate condition
to be imposed on g at the boundary of the cell is

g(Rna T+ li)|P+i - g(Rna T)IP;L- = _T|P+i + T|P~i7 (82)
where Py; and P_; are congruent points on opposite cell faces and l; are the basis
lattice vectors introduced in (2.5). This complicating feature of the boundary value
problem (3.41)—(3.42) is avoided in the alternative g-problem (3.48)—(3.51).

In the case of a non-conducting particulate phase
op =0,
(3.42¢) reduces to
€
—n-Vg=——V,-((Veg) (REs,).
He0t
Spatial gradients in g persist in the particulate domain in this case, corresponding

to finite E. On the other hand, for a perfectly conducting (e.g. metallic) particulate
medium,

op — 00,
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Charge transport through a spatially periodic porous medium 237
we have that E(R) — 0 (R € V},), whence
Vg—0 (ReV,).

However, 0, Vg may not vanish (barring the case of an ideally polarizable particulate
phase (Levich 1962)), and it is possible in this limit that condition (3.42a) will be
violated owing to sharp voltage potential gradients in the thin double layer zone.

Observe the following equivalences between the macrotransport scheme (Brenner
& Edwards 1993) for the effective diffusivity of an adsorbing solute in a spatially pe-
riodic porous medium and the electrical conduction problem characterized by (3.40a)
and (3.41)—(3.42):

diffusion scheme microvariables b(R) D(R) Ds(R) D
electrical conduction scheme microvariables g(R) o(R) —pi(R)esC(R)/pus @

Since —pfeeC/ ps is non-negative (cf. (3.1¢)) for both positively and negatively charged
surfaces, we may carry over the following conclusions for &, as described in detail by
Brenner & Edwards (1993) for the diffusion equivalent D"

o symmetric (= ET) } (8.3)

& positive definite (w7 -u > 0).

Here, the superscript 1 denotes the transposition operator and u is any non-zero
vector.

(b) Hydraulic permeability problem (K, V')

The microscale dyadic field V' (), from which the macroscale hydraulic permeabil-
ity K is to be calculated via (4.20), is spatially periodic, satisfying the boundary-
value problem (4.13)—(4.15). The field V' may be regarded as (the negative of) a
local, pointwise-varying, microscale permeability, which for a completely homoge-
neous continuum is given, simply, by

V(R) = const. = - K.

Particularly noteworthy is the boundary condition (4.15a), which corresponds to
the ‘production’ of the micro-permeability quantity V' at the particulate surface.
Physically, this condition reflects the fact that convection of fluid very near to the
solid boundaries s, owing to an applied pressure gradient, however minute this con-
vection may be, gives rise to a finite surface current which in turn creates an appre-
ciable ‘slip’ velocity near to the solid boundary in accordance with (3.3b).

The symmetry and positive-definiteness of K is easily established in the following
manner. Dot multiply (4.13) with V' and utilize (4.14) to obtain

V=v.[(VV)-V)-vV:vVvi-v.(vi).
Substitute this result into (4.20a) to find

— 1 1
K:Ti/ vv:vadv+T—/ V-(VH)VdV——T—/ V- [(VV)-V]dV.
o T o T o Tf
Use the divergence theorem on the second and third integrals, use condition (4.15a)
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and note the spatially periodic character of V' and IT to deduce
— 1
K = —/ vv:.vviav. (8.4)
7-—0 Tf
This result affords the immediate conclusion that

K symmetric (= fT) (8.5)
K positive definite (u - K - u > 0). )
/
(¢) Electromechanical coupling problems (Kp, h) and (Ky, V)

Electromechanical coupling phenomena at the Darcy scale of the porous material,

deriving from streaming current and/or electroosmotic phenomena at the micro-
—5C —=>C

interstitial scale, are characterized by the dyadics (Kp, Kp), at the Darcy scale,
and (h, V¥), at the microscale.

The spatially periodic vector field h(R) satisfies (3.44)—(3.45). As follows from
(3.38), it owes its existence to the susceptibility of the interstitial fluid phase to re-
ceive and conduct ‘streaming’ current away from the particulate surfaces (cf. (3.45b)).
Streaming current refers to current induced by an applied pressure gradient owing to
the convection of mobile double-layer ions. Even though the double layer is presumed
in the analysis to be very thin, and, consequently, the (pressure-gradient-induced) ve-
locity in this layer is very small, the double-layer excess charge (cf. (3.1¢)) is inversely
proportional to double-layer thickness 1/x, whence the surface-current ‘driving force’
V; (cf. (3.3d)) is generally of finite magnitude. For a homogeneous medium, as well
as in many applications (see e.g. §6), to within an arbitrary constant,

h(r) =0.

The spatially periodic microscale dyadic field V'® satisfies (4.16)-(4.18). Similar to
the field V, the dyadic V' may be viewed as a microscale electroosmotic permeability

(note, however, the opposite sign), which for a completely homogeneous continuum
is given by (cf. (4.21a))

VE(R) = const. = —K,.
Electro-osmosis refers to the convection which accompanies the movement of double-
layer ions owing to the action of an applied electric field.

On the basis of non-equilibrium-thermodynamic, Onsagger reciprocity (DeGroot
& Mazur 1969), it has been argued (Frank & Grodzinsky 1987b) from a purely
macroscopic point of view that

K}, = Ky
While we have not succeeded in proving this equivalence in general, it is significant

that for the two example problems outlined in §§6 and 7, this equivalence is in fact
obeyed.

9. Future directions

We intend to use the present theory to calculate the electromechanical transductive

. — TF ¢ 357C . . . . . .
properties (&, K,K, Ky) for spherical-particle arrays in a future contribution. It is
hoped to compare these results with the experimental measurements of Buschmann
et al. (1992) for the streaming potential and hydraulic permeability of (approximately
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spherical) chondrocyte cells, surrounded by charged, extracellular matrix, in agarose
gels. Similar calculations for actual cartilage materials would appear to require an
accurate microscale characterization of the cartilage medium, although the model
of randomly oriented, charged cylinders — as suggested by Eisenberg & Grodzinsky
(1988) — may provide a reasonable starting point.

Numerous practically significant extensions of the present article suggest them-
selves. Generalization to address the case of double layers of finite thickness is an
obvious extension. Electrokinetic phenomena in cartilage material, for example, of-
ten involve separation distances between charged surfaces that are of the order of
the Debye length (Grodzinsky 1983). A thorough examination of electrokinetic phe-
nomena in cartilage material will, therefore, ultimately require consideration of the
effects of finite double layers.

Charge-mediated transport of particles through a charged porous medium, as
arises in the transport of macromolecules through the kidney’s glomerular basement
membrane, requires an extension of the theory either to include: (i) finite double
layers; (ii) finite size of Brownian particle (cluster); (iii) a double layer thickness
that is much smaller than the pore size, though larger or of the same order as the
Brownian particle size. This latter extension, which introduces the possibility of the
Brownian particle entering regions of non-zero charge density near charged, partic-
ulate surfaces, appears most straightforward to effect on the basis of the present
article.

Application of the theory to the removal of waste materials from underground
soils (Shapiro et al. 1989) entails a further extension to address the case of bulk and
surface chemical reaction of the convecting/diffusing species. At least for the case
of first-order irreversible chemical reactions, this extension may be accomplished by
building upon the work of Shapiro & Brenner (1988).

A major application of the current theory is toward the elucidation of transdermal
transport of charged and non-charged drugs in the presence of an electrical field.
This application, which possesses large significance in regards to transdermal drug
delivery (Langer 1990), has recently been pursued in the context of the present theory
by Edwards & Langer (1994).
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